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Implementation of a Pressure
Drop Model for the CFD
Simulation of Clogged
Containment Sump Strainers
The present study aims at modeling the pressure drop of flows through growing cakes of
compressible fibrous materials, which may form on the upstream side of containment
sump strainers after a loss-of-coolant accident. The model developed is based on the
coupled solution of a differential equation for the change of the pressure drop in terms of
superficial liquid velocity and local porosity of the fiber cake and a material equation that
accounts for the compaction pressure dependent cake porosity. Details of its implemen-
tation into a general-purpose three-dimensional computational fluid dynamics code are
given. An extension to this basic model is presented, which simulates the time dependent
clogging of the fiber cake due to capturing of suspended particles as they pass trough the
cake. The extended model relies on empirical relations, which model the change of
pressure drop and removal efficiency in terms of particle deposit in the fiber cake.
�DOI: 10.1115/1.4000365�
Introduction
The investigation of insulation debris generation and transport

uring loss-of-coolant accident �LOCA� events, as well as the
hort and long term behavior of the emergency core cooling sys-
em �ECCS� must be considered with regard to the safety of pres-
ure and boiling water reactors under such conditions �1–3�. The
ineral wool blankets that are used to insulate the components of

uclear reactors can be destroyed by jetting steam during LOCA.
portion of the mineral wool fiber debris can then be transported

nto the containment sump, which collects the cooling water for
se in the ECCS in the late phase of LOCA. Mineral wool fibers
hat accumulate at the ECCS pump suction strainers lead to in-
reased pressure drops, which could reduce the pumps capability
o recirculate the cooling water. Hazards associated with such an
ncident were emphasized by an incident at the Barsebäck-2
uclear power plant in Sweden in 1992 when a steam valve inad-
ertently opened �4�. The debris quickly blocked the ECCS pump
trainers, resulting in a potential compromise in the defense-in-
epth concept for the reactor.

The transient build-up of the pressure drop after LOCA can be
ivided into two different stages. The first, significant increase in
he pressure drop occurs soon after the LOCA event and results
rom accumulation of the fibrous particles originating from the
estroyed insulation blankets in the neighborhood of the break.
ue to the size of the insulation fibers, only a little quantity of

hem is able to penetrate the sump strainers, which are usually
ade of perforated plates with holes measuring a few millimeters

n diameter. Most fibers reaching the strainer immediately form a
ighly compressible cake of high porosity. This cake is an effec-
ive means of removing the remaining fibers suspended in the
oolant. In the later stage of the LOCA, a second strong increase
n the pressure drop may occur in spite of an apparently clear
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coolant flow. This effect has attracted the attention of nuclear
regulatory commissions as it may severely undermine the long-
term reliability of the ECCS �5�. It is attributed to fine grained
particles and hydrated gels, which are trapped on the fiber sur-
faces in the interior of the fiber cake. The deposit increases the
roughness of fiber surfaces and constricts the free cross section
available to the flow. Chemical interactions in the post-LOCA
phase between the ECCS water, which contains boric acid and
sodium hydroxide at elevated temperatures, and exposed metal
surfaces, paint coatings or insulation debris are supposed to be the
source of the deposit.

This study proposes a model for calculating the transient
build-up of the pressure drop over a growing, compressible fi-
brous bed. This basic model has been implemented into the com-
mercial, general-purpose computational fluid dynamics �CFD�
code ANSYS-CFX �6� in order to calculate the pressure drop at
nonuniformly loaded strainers. The subsequent clogging of the
fiber cake by suspended fine particles is addressed in a generic
way by treating the cake as a depth filtration medium, which is
subject to a coolant flow with a given concentration of particles
impinging on its upstream end. This extended model should be
considered as a first approach to the problem of ECCS long-term
effects as it currently relies on empirical formulations of correc-
tion functions for the deposit dependent pressure drop and filtra-
tion efficiency. These correction functions have yet to be adjusted
to experiments.

2 Theoretical Model
The initial stage after activation of the ECCS pumps is marked

by the accumulation of fibrous particles on the upstream side of
the containment sump strainers. At this time, the coolant is essen-
tially free of secondary debris, i.e., of fine particles stemming
from corrosion and other chemical effects, and the cake forming
on the upstream side of the strainers remains clean. Due to the
deformability of the fibers, the cake can be easily compressed
under the action of fluid drag forces or an external compacting
pressure. The basic model describing the flow through compress-

ible clean fiber beds is presented in the following Sec. 2.1. The
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Downlo
ow of fine particle loaded coolant trough fiber beds involves the
olution of additional transport and balance equations to get the
istribution of particles deposited in the fiber cake. The necessary
odel extension for this type of flow is presented in Sec. 2.2.

2.1 Flow Through Clean Fibrous Bed. A standard approach
n the investigation of fluid flow in macroscopically homogeneous
orous medium is to characterize the system in terms of Darcy’s
aw

U = −
k

�

�p

L
�1�

t linearly relates the superficial flow velocity U to the hydraulic
ressure difference �p that is applied to a layer of porous material
f streamwise thickness L and permeability k; � is the dynamic
iscosity of the fluid. However, as evidenced by numerous experi-
ents, this relationship only holds for very low flow velocities
here viscous forces predominate. Unlike pipe flow, which is

haracterized by a sudden passage from the viscous to the inertial
egime at a critical Reynolds number, the departure from the lin-
ar U��p relationship proves to be gradual for flow in porous
edia. Consequently, the contribution of inertia to the flow in the

ore space should also be examined in the framework of the lami-
ar flow regime before assuming that fully developed turbulence
ffects are present and relevant to momentum transport �7�.

A more general relationship between flow velocity and pressure
rop is given by the Forchheimer equation �8�

�p

L
= − ���U + ��U2� �2�

t regards the flow resistance of a porous layer as being made up
f two parts. The first one, which results from viscous forces,
epends linearly on velocity, while the second one, resulting from
nertial effects, is proportional to density � of the liquid phase
imes the square of velocity. The relative importance of both parts
s weighted by empirical coefficients � and �. Note that Eq. �2� is
ot purely empirical, since it can be derived by an appropriate
verage of the Navier–Stokes equation for one-dimensional steady
ncompressible laminar flow of a Newtonian fluid in an incom-
ressible porous medium �8�.

Initial efforts, dating back to the 1930s, focused on the deter-
ination of the coefficient � of Eq. �2� for purely viscous flow
ithin porous media. They lead to the well-known Carman–
oženy equation �9�

�p

L
= −

k�Af� f�2�1 − ��2

�3 �U �3�

here Af is the surface area per unit mass of the particle phase, � f
s its material density, and k is the Koženy constant, a to-be-
etermined empirical coefficient; porosity � is defined as

� =
Vv

Vtot
�4�

nd expresses the ratio between the void �=pore� volume Vv and
he total volume Vtot of the porous bed. Equation �3� has been
xtensively used in connection with granular media; it has shown
o yield bad results for fibrous media, though. Analytical reason-
ng for this is given in Ref. �10�. For fiber structures Davies �11�
roposed the equation

�p

L
= − a�Af� f�2�1 − ��1.5�1 + a0�1 − ��3��U �5�

hich showed better agreement with measured pressure drops
ver fibrous beds at laminar flow conditions. Based on a large
mount of experimental data, Ingmanson et al. �12� found values
f 3.5 and 57 for the empirical coefficients a and a0. To date these
onstants have been widely used for laminar flow through fibrous

orous media. However, as will be shown later, different values of
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these coefficients have been determined for mineral wool fibers.
Davis’ equation still neglects the contribution of inertia to the

over-all pressure drop of flow in the pore space. This deficiency
was remedied by Ergun �13� who suggested the relation

�p

L
= − b

Af� f�1 − ��
�3 �U2 �6�

for the turbulent flow regime in granular media. Nevertheless,
experimental studies �10� indicated that the functional relationship
in Eq. �6� can as well be applied to turbulent flow in fibrous
media. The empirical constant b was found to be close to 0.66.

Equations �5� and �6� can be combined to give a relation that
encompasses the whole range of flow regimes from laminar to
turbulent. It reads

�p

L
= − �a�Af� f�2�1 − ��1.5�1 + a0�1 − ��3��U

+ b
Af� f�1 − ��

�3 �U2� �7�

A simple force balance shows that the mechanical pressure, which
acts on the fibers and which results from the fluid drag, increases
in the streamwise direction along the cake. As fiber cakes are
compressible, this leads to a porosity distribution with a maximum
at the upstream and a minimum at the downstream end. Figure 1
illustrates this decrease in porosity by the shading getting darker
in the streamwise direction. Therefore, Eq. �7� can only be used to
calculate the differential change of the pressure drop d��p� /dx
from local porosity values ��x�. Hence, integration of Eq. �7� in
the streamwise direction is required to obtain the total pressure
drop �p over the fiber cake length L.

The local change in compacting pressure dpk /dx and the pres-
sure drop d��p� /dx of the flow have the same absolute value but
are opposite in sign. For dpk /dx it follows from Eq. �7�

dpk

dx
= −

d��p�
dx

= a�Af� f�2�1 − ��1.5�1 + a0�1 − ��3��U

+ b
Af� f�1 − ��

�3 �U2 �8�

As indicated above, the cake porosity depends on the local
compacting pressure. Hence, the complete description of the flow
still requires a compressibility function that relates porosity � to
the compacting pressure pk. The volume reduction in a porous bed
subject to a compacting pressure results from deformation of the
solids. Generally, the volume reduction is, in part, irreversible
because portions of the particles that constitute the bed may dis-
integrate or change their mutual orientation within the solid ma-
trix. To the author’s knowledge, a complete theoretical foundation
of the irreversible compression of porous media has not yet been
published. One possible method to workaround this problem is to
use different expressions for the first and the subsequent compres-

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

� � � � � � � � � � � � � �

�

�

�

x
L

dpk
dx (x)

ε(pk)

Fig. 1 Fiber cake at a strainer
sions of the porous bed, as shown in Ref. �14�, where the solid is
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Downlo
egarded as mechanically conditioned after the first compression,
hat is, having a constant compressibility independent of the com-
acting pressure.

The present study considers the flow through a growing bed of
bers, which are deposited from a dilute fiber suspension during
OCA. Thus, the change of material properties due to repeated
ompression and release plays a secondary role and shall be ne-
lected here. It should be pointed out, however, that the latter
ssumption does not imply a restriction of the applicability of the
ow equation presented here as it can be combined with any
orking compressibility function.
For a given fibrous material the compressibility function must

e determined experimentally. The measurement principle is de-
icted in Fig. 2�a�. A known quantity mf of insulation material,
laced into a vertical cylinder with cross-sectional area A, is sub-
ect to a uniform compacting pressure pk, resulting from an exter-
ally applied force Fk. Then, pk amounts to

pk =
Fk

A
�9�

nd porosity � can be calculated from height h as

� = 1 −
mf

� fAh
�10�

Most compressibility functions for fibrous beds, relating bed
orosity � to mechanical compacting pressure pk, have the form
15�

� = 1 − qpk
r �11�

ith empirical parameters q and r. This expression, however, suf-
ers from the fact that it does not give adequate estimates for the
imiting cases of zero and infinite compaction pressures. There-
ore, the four-parameter equation

��pk� = �� + ��0 − ���e−Cpk
D

�12�
s suggested, which does not have this shortcoming. It has proven
o reproduce measured relationships ��pk� especially well. Figure
�b� illustrates the expected curve, as well as two of the param-
ters, the porosities �0 and �� at zero and infinite compacting
ressures. Determination of the parameters in Eq. �12� requires a
onlinear least-squares fitting method, such as the Marquardt–

� � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � � � �

� � � � � � � �

h
h0

Fk

εεε

(a)

pk

ε∞

ε0

(b)

ig. 2 „a… compaction measurement principle; „b… typical com-
action curve ε„pk…
evenberg algorithm, which is, for example, implemented in the
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open-source data plotting software GNUPLOT �16�.
Figure 3 shows compaction measurements �points� and their

approximation by Eq. �12� �lines� of two different mineral wool
samples. Measurements were performed at room temperature as
the elastic properties of the mineral fibers are supposed not to
change significantly in the expected range of temperatures below
100°C. The material density � f, which is needed to calculate the
porosity �, Eq. �10�, was measured by helium pycnometry �PEN-

TAPYCNOMETER V. 2.1, Quantachrome Instruments, Boynton Beach,
FL, USA�. Densities and compaction parameters of the rock wool
samples are summarized in Table 1.

Flow equation �8� and compressibility function �12� constitute
an initial value problem for calculating the streamwise compac-
tion pressure and porosity profiles along the fiber cake. It has to be
solved by integration with respect to x starting at the upstream end
of the cake toward the strainer plate with initial conditions pk�0�
=0 and ��0�=�0, which correspond to zero compaction pressure
and standard porosity of the mineral wool.

A stopping condition for the integration needs to be formulated
yet. Integration should stop as soon as the amount of fibrous phase
contained in the integration interval corresponds to a previously
given strainer mass load Nf ,given. In the case of a growing fiber
cake, this mass load may be obtained by integrating the suspended
fibers mass flow rate with respect to time. Strainer mass load Nf is
defined as mass of fibers per unit area of strainer plate. The con-
tribution dNf of an infinitesimal slice dx of the cake to the total
strainer mass load is calculated from local porosity � as

dNf = � f�1 − ��dx �13�
Thus, differential equation

dNf

dx
= � f�1 − �� �14�

must be solved together with the differential equation of flow �8�,
subject to the initial condition Nf =0 at the upstream end of the
cake. Integration stops on fulfilling the condition Nf�x�=Nf ,given,
yielding the total length �streamwise thickness� L of the com-
pressed fiber cake. The pressure difference over the entire fiber
bed follows directly from the compacting pressure at the strainer
position as

�p = − pk�L� �15�

0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96

0 10 20 30 40 50 60 70 80 90

ε

pk / kPa

Sample 1

Sample 2

Fig. 3 Measured relationship of compaction pressure pk and
porosity ε for given samples of mineral wool

Table 1 Material density and compaction parameters of min-
eral wool samples

� f
�kg m−3� �0 ��

C
�Pa−D� D

Sample 1 2740 0.9744 0.8169 0.00078 0.6502
Sample 2 2690 0.9817 0.8083 0.00195 0.5668
AUGUST 2010, Vol. 132 / 082902-3
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2.2 Clogging of the Fiber Bed by Solid Particles. In the late
hase of a LOCA, when most of the primary fibrous debris have
een removed from the coolant flow, the fiber cake acts as a depth
ltration medium because small particles, which have been gen-
rated by chemical processes in the upstream regions of the con-
ainment, such as corrosion and precipitation, penetrate into the
ake and deposit at various depths. The filtration process is intrin-
ically transient, as deposited material changes both the geometry
f the interstitial space in the cake and the nature of the collector
fiber� surfaces. This is reflected in the variations in the filter
fficiency being a measure of the fiber cake’s ability to remove
articles from the flow and of the pressure drop.

The particle distribution within a filter bed is governed by a
acroscopic mass conservation equation and a rate equation. Un-

er normal filtration conditions, where the suspension flow veloc-
ty is in the order of centimeters per second, particles are trans-
orted mainly by advection and particle diffusion due to Brownian
otion can be neglected. Then, the mass conservation can be
ritten as �17�

d�

dt
+

d

dx
�u	p� = 0 �16�

here � is the volumetric deposit �volume of captured particles
er volume of filter bed�, u is the suspension approach velocity,
nd 	p is the suspension concentration �particle volume fraction�.
he rate at which the quantity of captured particles changes with

ime can be expressed as

d�

dt
= 
u	p �17�

nlike the mass conservation equation, which is independent of
he clogging mechanism, the rate equation, in particular, the filter
oefficient 
, is a function of the elementary processes, which are
esponsible for the transfer of particles from suspension to the
mmobilized state. Research into the modeling of depth filtration
as concentrated on predicting 
 from �, i.e., how the removal
fficiency changes as deposition in the filter increases. A number
f empirical approaches have been used, see Ref. �18� for an
verview. Later in this study we will use some basic relationships
o establish the connection between filter coefficient 
 and volu-

etric deposit � and similarly for the pressure drop.
It is convenient to substitute the suspension approach velocity u

y the superficial liquid velocity U, since the latter does not
hange in the streamwise direction of an axial filter. With U
u�1−	p� we get from Eq. �16�

d�

dt
+

U

�1 − 	p�2

d	p

dx
= 0 �18�

nd from Eq. �17�

d�

dt
= 
U

	p

1 − 	p
�19�

quations �18� and �19� can be combined and solved for d	p /dx
iving

d	p

dx
= − 
	p�1 − 	p� �20�

his is a first order ordinary differential equation for the suspen-
ion concentration 	p within the fiber cake. It must be integrated
long x with the influent suspension concentration as initial con-
ition for 	p at the upstream end of the fiber cake.

As stated above, the filter coefficient 
 is a function of the
mount of deposited particles � and of the clean fiber cake poros-

ty �. This can be expressed as

82902-4 / Vol. 132, AUGUST 2010
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 = F1��,��
c��� �21�

where 
c is the porosity dependent clean bed filter coefficient and
F1 is a correction factor, which accounts for the altered collecting
ability of the clogged cake. F1 also depends on the cake porosity.
Likewise, the pressure drop of a clogged filter is different from a
clean one. As the pressure drop �p is equivalent to the compac-
tion pressure pk, one writes

dpk

dx
= F2��,���dpk

dx
	

c

�22�

in order to correct the compaction pressure, which is obtained for
the clean fiber bed by integrating Eq. �8�. It can be anticipated that
F1 and F2, as well as 
c, are complicated functions owing to the
difficult nature of the particle fiber interaction. The deposit distri-
bution � in the cake required by F1 and F2 is obtained by inte-
grating Eq. �19� with respect to time.

While the deposit quantity grows in the fiber cake, the cake
structure changes and hence its permeability to the flow decreases.
Obviously, this clogging process is not uniform throughout the
cake, but advances in the direction of the main flow. Although
clogging starts at the upstream end of the cake, the increased
pressure drop there contributes to the compaction of the deeper
cake sections, even if the latter has not yet been reached by the
suspension. This leads to a further compression of the entire cake,
reducing its length L. As stated above, to get the deposit distribu-
tion in the cake at a particular time it is necessary to integrate Eq.
�19� between the start of clogging, i.e., the moment when suspen-
sion reaches the upstream end of the cake, and that time. Since a
numerical scheme is to be adopted to solve the set of coupled
differential equations, the deposit distribution at previous time
steps must be held in computer memory. In view of a variable
fiber bed length L, it is therefore necessary to map the deposit
values � at position x along the compressed bed onto values �� at
positions x� of the uncompressed bed.

Based on the volume of deposited particles Vp and the total
volume of the cake element Vtot, the volumetric deposit � is de-
fined as

� =
Vp

Vtot
�23�

Vtot can be expressed in terms of the clean bed porosity � and the
volume of fibers Vf

Vtot =
Vf

1 − �
�24�

Substitution into Eq. �23� gives

� =
Vp

Vf
�1 − �� �25�

From Fig. 4 it can be concluded that the ratio between the depos-
ited particle volume Vp and the volume of fibers Vf remains con-
stant if a cake element undergoes compression. Thus

Vp

Vf
=

�

1 − �
= const �26�

and the volumetric deposits of an uncompressed and a compressed

fibres

deposit

void

Fig. 4 Clogged fiber bed element in uncompressed and com-
pressed states
cake element relate as
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��

�
=

1 − �0

1 − �
�27�

quation �27� can be used to convert forth and back between
ompressed and uncompressed bed deposit values � and ��.

A mapping function between the streamwise coordinates x� and
of an uncompressed and a compressed bed can be derived from
q. �13�. For an uncompressed bed one can similarly write

dNf = � f�1 − �0�dx� �28�

ow, the amount of fibers dNf contained in the infinitesimal slices
x of a compressed bed and dx� of an uncompressed bed should
e the same such that Eqs. �13� and �28� can be combined to the
rdinary differential equation

dx�

dx
=

1 − ��x�
1 − �0

�29�

t allows one to calculate the uncompressed bed position x� be-
onging to the compressed bed position x.

For the solution of Eq. �20� we still need the time dependent
enetration depth xpen of the suspension because 	p, which ap-
ears on the right hand side of the differential equation must be
et to zero when integration along x goes past xpen. At time t, the
olume of suspension that has entered the fiber cake so far
mounts to

Vs = A

0

t

ud� = A

0

t
U

1 − 	p,up
d� �30�

here 	p,up designates the particle suspension concentration at the
pstream end of the fiber bed and A is the bed cross-sectional
rea. This corresponds to the void �interfiber� volume

Vv = �0Axpen� �31�
f an uncompressed clean fiber bed filled with suspension up to

pen� . Thus, while integrating Eqs. �20� and �29�, 	p is to be set to
ero as soon as

x� �
1

�0



0

t
U

1 − 	p,up
d� �32�

Application of the Model Equations
First, the application of the model equations to the case of a

lean compressible fiber cake, which is formed during the first
hase of a LOCA, will be demonstrated. The initial value problem
onsisting of Eqs. �8� and �14� is integrated numerically by means
f the differential equation solver LSODAR from the open-source
ibrary ODEPACK �19�. The local porosity � is calculated from the
ocal compaction pressure pk using material Eq. �12�.

Equation �8� contains empirical parameters a, a0, and b, which
ust be determined by experiment. As the mass specific surface
f of the fibrous material is difficult to be measured, empirical
arameters a and b, and the material properties Af and � f were
ombined to

ã = a�Af� f�2 and b̃ = bAf� f �33�

rom pressure drop measurements the values ã=1.1275

1011 m−2, a0=120, and b̃=5.8089104 m−1 were found for
ineral wool sample 2 �cf. Table 1�.
Calculated profiles of compaction pressure and cake porosity in

growing fiber cake are shown in Figs. 5�a� and 5�b�. The left end
positions of the profiles mark the total length L of the com-

ressed fiber bed, while x=0 marks the strainer position. For con-
tant flow velocity u and upstream fiber concentration 	 f, the
hape of the profiles does not change with time but is shifted to
he left as the cake grows. The nonlinearity of the pressure profiles

s caused by the compressibility of the cake. Cake porosity �
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decreases in the flow direction due to the growing compaction
pressure and hence dpk /dx increases because it depends on �. The
pressure drop over the cake, as shown in Fig. 5�c�, increases
slightly progressively with time since the mean porosity of the
growing cake decreases.

Figure 6 shows the compaction pressure and porosity profiles in
a cake of constant mass, where the flow velocity of the liquid has
been varied. The cake length decreases as the velocity increases
and the nonlinearity of profiles becomes more pronounced.

The pressure drop �p over the fiber cake was determined, both
numerically and experimentally, as a function of the superficial
velocity for different water temperatures. A schematic view of the
experimental set-up is given in Fig. 7. Results are shown in Fig. 8.
The measurement at T=70°C was used to determine the material

specific model parameters ã, b̃, Eq. �33�, and a0, which were then
used in subsequent calculations with different mass loads and tem-
peratures. For comparison the computed curves and measured
data points have been plotted into one diagram. Pressure drops
measured at different experimental conditions could be repro-
duced with reasonable accuracy. A small offset between the ex-
perimental and calculated curves is due to an offset in the mea-
surement which produced nonzero �p values at zero flow
velocity.

The clogging of a fiber cake of constant fiber mass load subject
to a fine particle suspension flow was simulated based on the
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Fig. 5 Fiber cake build-up; profiles of „a… compaction pres-
sure, „b… porosity; „c… development of pressure drop; u
=4 cm s−1, �f=0.001
extended model. Differential Eqs. �20�, �22�, and �29� are solved
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umerically by means of the solver LSODAR, and Eq. �19� was
ntegrated with respect to time using the Euler method of first
rder with a constant timestep of �t=0.01 s. The deposit concen-
ration � is assumed to be small such that the elastic properties of
he fiber cake are unaffected and the parameters in Eq. �12� re-

ain constant.
As stated above, the interaction between particles and the grain

r fiber surfaces of filter media is still far from being completely
nderstood. Hence, many correlations, most of them empirical,
xist in the literature �20�. The empirical ones usually calculate
orrection factors that are multiplied with the filter coefficient 
c
nd the pressure drop ��p�c of the clean filter media


 = F1���
c �34a�
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�p = F2�����p�c �34b�

Since we are dealing with compressible filter media, it is most
probable that the clean filter coefficient 
c is a function of �, as a
particle is more likely to be captured by a filter whose fibers are
packed more densely. Therefore, the simple relation


c��� = − b
 ln � �35�

will be used here to make 
c depend on the clean bed porosity. b


is an empirical parameter to be obtained from experiments. Equa-
tion �35� evaluates to zero at �=1 �no fibers� and tends to infinity
as � approaches zero �no void�.

Often, the corrections F1 and F2 in Eq. �34� have the form

F1��� = 1 + bF1� �36a�

F2��� = 1 + bF2� �36b�

with bF1 and bF2 being empirical constants. Although related to
the fiber cake volume, the volumetric deposit � serves here as a
measure of the degree of fouling of the fibers by captured par-
ticles. If the filter is incompressible, this is equivalent to relating
the captured particle volume to the fiber volume because the ratio
between fibers and total cake volume is constant. However, if the
cake is compressible, it would be more appropriate to use the ratio
Vp /Vf instead of � as a fouling measure in the correction func-
tions because Vp /Vf is independent of the fiber cake’s compres-
sion state �cf. Fig. 4�. Replacing � by Vp /Vf in Eq. �35� and
making use of Eq. �26� gives

F1��,�� = 1 + bF1
�

1 − �
�37a�

F2��,�� = 1 + bF2
�

1 − �
�37b�

which will be used as correction factors in Eqs. �21� and �22�
introduced above.

The ability of the extended model to calculate the clogging
process of a fiber cake is demonstrated in Fig. 9. The present case
is based on arbitrarily chosen parameter values in Eqs. �35� and
�37�. Experiments are needed to provide more realistic values.
Although the clean fiber mass load Nf and the flow velocity U are
held constant, compaction pressure, Fig. 9�a�, and porosity pro-
files, Fig. 9�b�, get steeper with time due to the increasing flow
resistance of the clogging cake. As a consequence, the cake is
further compacted and the total bed length L decreases. Suspen-
sion concentration profiles are shown in Fig. 9�c�. The steep drop
in the concentration profile at t=4 s marks the propagating con-
centration front, which separates the penetrating particle suspen-
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Fig. 8 Calculated and experimentally determined pressure
drop-superficial velocity relationship at different temperatures,
Nf=5.41 kg m−2
sion from the clear water being displaced from the cake. Since a
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ositive value has been chosen for bF1, the filter performance of
he cake enhances with growing deposit concentration and the
ffluent particle concentration at x=0 decreases with time. In re-
lity, however, the 
−� relationship is not monotonic, and one
istinguishes several stages of the filtration process with an initial
ncrease and a subsequent decrease in the filter coefficient �21�.

ore advanced correlations than Eqs. �35� and �37� should there-
ore be used for practical applications. Finally, the deposit distri-
utions are plotted in Fig. 9�d�. It can be seen that the current set
f parameters, which implies a self-amplifying 
−� relationship
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auses the particles to preferably deposit at small cake depths.
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4 Implementation Into the CFD Code ANSYS-CFX

Equations �8�, �14�, and �12� for the clean fiber cake have been
implemented into the CFD code ANSYS-CFX in order to calculate
the transient build-up of the pressure drop over nonuniformly
loaded strainers. This task is addressed by placing a subdomain of
fixed thickness d into the flow geometry. It represents the filter
cake and the strainer plate and separates the upstream from the
downstream region, as illustrated in Fig. 10. The cross-stream
distribution of the strainer resistance is made up by a parallel
connection of multiple resistances, the magnitude of each depend-
ing on the local fiber mass load and superficial velocity values.

In order to make allowance for transient flows, the strainer
mass load distribution at time t has to be calculated by integrating
the fibrous particle phase mass flow passing through the strainer
subdomain with respect to time according to

Nf�t� = � f

0

t

	 fu f · nd� �38�

where 	 f represents the local fibrous particle phase volume frac-
tion of the flow and u f ·n the velocity component of the fibers in
the direction of the strainer normal n.

The compacting pressure pk acting on the strainer can be com-
puted from the local values of fiber mass load Nf and superficial
velocity U by solving Eqs. �8�, �12�, and �14�. Superficial velocity
U in Eq. �8� is obtained from liquid phase velocity u by

U = �1 − 	 f�u · n �39�
Again, the actual task of integrating the system of differential Eqs.
�8� and �14� is passed on to the differential equation solver LSO-

DAR. The wanted pressure drop �p is readily obtained from the
compaction pressure pk according to Eq. �15�.

Now, the flow resistance the liquid phase experiences within the
strainer subdomain can be determined. It is modeled as source S
in the momentum transport equation using the “isotropic loss
model” of CFX

S = − ���u + ��u2� �40�

where � and � are the linear and quadratic loss coefficients. The
computed pressure drop �p already contains the viscous ��u� and
inertial ��u2� contributions to the momentum loss, cf. Eq. �7�.
Therefore, only one of the coefficients � or � needs to be deter-
mined, while the other can be set to zero. Here, the linear coeffi-
cient has been chosen. It reads

� = � �p

�du · n
� �41�

Momentum source �40� can now be set for the strainer subdomain.
On solving the momentum equations in a CFX solver run, integra-
tion of Eq. �40� establishes the previously determined pressure
drop between the up and downstream ends of the strainer subdo-
main.

For testing the implementation, a step like channel geometry
with a horizontally embedded strainer was constructed. Together
with a nonuniformly distributed fibrous particle phase in the in-
flow, this will lead to an unevenly loaded strainer. Details of the

strainer

upstream downstream

d

Fig. 10 Strainer represented as CFX subdomain
case definition can be found in Ref. �22�.
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Flow fields at different simulation times are shown in Fig. 11.
he solution at t=0 s corresponds to the stationary solution that
as found for clear water filling the computational domain. A

arge recirculation area forms behind the back facing step in the
ower channel section and two smaller ones at the upper right
orner of the upstream section, as well as beneath the upper wall
f the downstream section. The most noticeable difference be-
ween the flow fields at start and end of the simulation is the flow
irection in the strainer subdomain. The particle laden strainer
cts like a rectifier, which forces the flow into the vertical direc-
ion. This rectifying effect is caused by the high pressure drop
ver the clogged strainer leading to a pressure gradient, whose
aximum is in the strainer normal direction. Throughout the

imulation, a constant velocity of u=4 cm s−1 and a linear vol-
me fraction profile of the fibrous particle phase with 	 f =0 at the
hannel top and 	 f =0.015 at the channel bottom were specified as
nlet boundary conditions at x=0.

Conclusion
The linear relationship between superficial flow velocity and

ressure drop, as suggested by Darcy’s law, fails in the case of
ompressible fibrous media. In the present article a combination
f a semi-empirical flow equation and a material equation is pro-
osed that allows one to calculate the pressure drop in beds com-
osed of this class of materials. The system of model equations
onstitutes an initial value problem, which is solved numerically
or given strainer mass load and flow velocity. Solid density, mass
pecific surface, and the static compaction properties of the fi-
rous material need to be known.

Computed porosity and compaction pressure profiles are non-
inear along the fiber bed since they depend on each other. The
xperimentally found nonlinear relationship between flow velocity
nd pressure drop could be reproduced with sufficient accuracy
sing a one-dimensional implementation of the model equations.

The pressure drop model was extended to calculate the clog-
ing of the initially clean fiber cake by particles removed from a
uspension. Simple relations have been used to account for the
ependency of the filter coefficient and of the pressure drop on the
uantity of deposited material. However, the general applicability
f the modeling framework could be demonstrated. Further ex-
erimental and modeling effort is necessary to enable it for prac-
ical applications.

The model has been successfully implemented as an extension
o the general-purpose CFD code ANSYS-CFX. Its capability to
imulate the transient pressure drop build-up at nonuniformly
oaded strainers in arbitrary three-dimensional geometries has
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ig. 11 Flow field „streamlines… in the channel mid plane; „a…
=0 s and „b… t=40 s
een demonstrated using a steplike flow geometry with a horizon-
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tally embedded strainer plate. It was shown that the pressure drop
at the strainer has a rectifying effect on the flow.
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Nomenclature
Af � specific surface area of fibers

C, D � parameters of the material equation, Eq.
�12�

F1, F2 � correction functions for the filter coeffi-
cient and the pressure drop of the
clogged fiber bed

L � total streamwise fiber cake length
Nf � fiber mass load per strainer unit area
U � superficial liquid phase velocity
Vf � volume of fibers
Vp � volume of deposited particles
Vv � void volume of the clean fiber cake

Vtot � total volume of the fiber cake
a, a0, b � coefficients of the Davies–Ergun equa-

tion, Eq. �7�
ã, b̃ � parameter groups, Eq. �33�

bF1, bF2 � empirical parameters in correction func-
tions F1 and F2, Eq. �37�

b
 � empirical parameter in Eq. �35�
d � streamwise extension of CFX subdomain

“strainer”
n � strainer normal vector

�p � pressure drop
pk � compaction pressure

t � time
u � liquid phase velocity vector
u � particle suspension approach velocity

up �subscript� � value at upstream end of fiber cake
x � space coordinate

xpen � penetration depth of particle suspension
� �superscript� � related value in the uncompressed fiber

bed
� and � � linear and quadratic loss coefficients

� � clean fiber cake porosity
�0 and �� � fiber cake porosities at zero and infinite

compaction pressures

 and 
c � filter coefficient and clean fiber cake

filter coefficient
� � liquid phase dynamic viscosity
� f � material density of fibers
� � liquid phase density
� � volumetric deposit
	p � particle suspension concentration
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